Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production
نویسندگان
چکیده
Layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of -103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10(-3) mA cm(-2), performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance.
منابع مشابه
Effect of Polymer Addition on the Structure and Hydrogen Evolution Reaction Property of Nanoflower-Like Molybdenum Disulfide
Nano-structured molybdenum disulfide (MoS2) catalysts have been extensively developed for the hydrogen evolution reaction (HER). Herein, a novel hydrothermal intercalation approach is employed to fabricate nanoflower-like 2H–MoS2 with the incorporation of three polymers, polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and polyethylenimine (PEI). The as-prepared MoS2 specimens were characte...
متن کاملMo-Terminated Edge Reconstructions in Nanoporous Molybdenum Disulfide Film.
The catalytic and magnetic properties of molybdenum disulfide (MoS2) are significantly enhanced by the presence of edge sites. One way to obtain a high density of edge sites in a two-dimensional (2D) film is by introducing porosity. However, the large-scale bottom-up synthesis of a porous 2D MoS2 film remains challenging and the correlation of growth conditions to the atomic structures of the e...
متن کاملIdentification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts.
The identification of the active sites in heterogeneous catalysis requires a combination of surface sensitive methods and reactivity studies. We determined the active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) by atomically resolving the surface of this catalyst before measuring electrochemical activity in solution. By pr...
متن کاملCarbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability.
Fabricating a cost effective hydrogen evolution reaction catalyst without using precious metal elements is in crucial demand for environmentally-benign energy production. In this work, the thin and edge-rich molybdenum disulfide nanosheets, with carbon doped in the interlayers and decorated on graphene, were developed by a facile solvothermal process. The as-synthesized nanohybrids exhibited hi...
متن کاملA molecular MoS₂ edge site mimic for catalytic hydrogen generation.
Inorganic solids are an important class of catalysts that often derive their activity from sparse active sites that are structurally distinct from the inactive bulk. Rationally optimizing activity is therefore beholden to the challenges in studying these active sites in molecular detail. Here, we report a molecule that mimics the structure of the proposed triangular active edge site fragments o...
متن کامل